APIs, concepts, guides, and more
Motion: G-Code

Learn how to work with G-Code motion in C#.

Warning
This is a sample program to assist in the integration of the RMP motion controller with your application. It may not contain all of the logic and safety features that your application requires. We recommend that you wire an external hardware emergency stop (e-stop) button for safety when using our code sample apps. Doing so will help ensure the safety of you and those around you and will prevent potential injury or damage.

The sample apps assume that the system (network, axes, I/O) are configured prior to running the code featured in the sample app. See the Configuration page for more information.


In this page:


πŸ“œ Motion: G-Code

Learn how to set up and run G-Code 📖 motion with a Robot object. Shows how to create kinematic models, load G-Code programs, register callbacks for M-codes, and monitor execution progress during motion.

/* This sample demonstrates how to set up and run G-Code motion with a Robot object.
Shows how to create a kinematic model, load G-Code programs, and execute them.
Includes callback handling for M-codes and monitoring execution progress.
*/
using RSI.RapidCode; // RSI.RapidCode.dotNET;
using System.Threading;
Console.WriteLine("πŸ“œ Motion: G-Code");
// get rmp objects
try
{
Helpers.CheckErrors(controller);
// sample G-Code program
string gcodeProgram = @"G91; Sets the programming mode to RELATIVE
G64; Turns off exact stop mode (Default)
G1 X1.0 Y0.0 Z0.0 A1.0 F60.0; Move on USERUNIT in positive x direction at 60in/min. Moves Free axis A to position 1.0.
G3 X1 Y1 I0 J1; Counter clockwise arc with a center point of 0,1,0 and end point of 1,1,0 relative to the current position
M80; Show how to use an M-code with GcodeCallback!";
// set robot axis labels
const string xLabel = "X-Axis";
const string yLabel = "Y-Axis";
const string zLabel = "Z-Axis";
const string aLabel = "A-Axis";
// get the 4 axis needed for XYZA robot
Axis xAxis = controller.AxisGet(Constants.AXIS_0_INDEX);
Axis yAxis = controller.AxisGet(Constants.AXIS_1_INDEX);
Axis zAxis = controller.AxisGet(Constants.AXIS_2_INDEX);
Axis aAxis = controller.AxisGet(Constants.AXIS_3_INDEX);
// configure phantom axes
// set axis labels
xAxis.UserLabelSet(xLabel);
yAxis.UserLabelSet(yLabel);
zAxis.UserLabelSet(zLabel);
aAxis.UserLabelSet(aLabel);
// create multi-axis object for joints
MultiAxis jointsMultiAxis = controller.MultiAxisGet(0);
Axis[] axes = [xAxis, yAxis, zAxis, aAxis];
jointsMultiAxis.AxesAdd(axes, axes.Length);
jointsMultiAxis.ClearFaults();
jointsMultiAxis.AmpEnableSet(true);
// create kinematic model
const string modelName = "RSI_XYZA";
const double scaling = 1.0;
const double offset = 0.0;
LinearModelBuilder builder = new(modelName);
builder.JointAdd(new LinearJointMapping(0, CartesianAxis.X) { ExpectedLabel = xLabel, Scaling = scaling, Offset = offset });
builder.JointAdd(new LinearJointMapping(1, CartesianAxis.Y) { ExpectedLabel = yLabel, Scaling = scaling, Offset = offset });
builder.JointAdd(new LinearJointMapping(2, CartesianAxis.Z) { ExpectedLabel = zLabel, Scaling = scaling, Offset = offset });
builder.FreeAxisAdd(new ModelAxisMapping(3) { ExpectedLabel = aLabel, Scaling = scaling, Offset = offset });
// set free axis accel & decel before creating the robot object
// create Robot object
Robot robot = Robot.RobotCreate(controller, jointsMultiAxis, builder, MotionController.AxisFrameBufferSizeDefault);
// set robot acceleration
robot.Gcode.AccelerationRateSet(1000);
// the free axis index refers to the index in the RobotPosition freeAxes array
robot.Gcode.FreeAxisLetterSet(gcodeLetter: 'A', freeAxisIndex: 0);
// register callback for M-code commands (note: callback class would need to be defined separately)
SampleGcodeCallback callback = new();
robot.Gcode.CallbackRegister(callback);
try
{
// load and prepare G-Code for execution
robot.Gcode.Load(gcodeProgram);
}
catch (Exception e)
{
Console.WriteLine($"Error loading G-Code: {e.Message}");
Helpers.CheckErrors(robot.Gcode); // get additional G-Code error details
throw;
}
// print motion details
Console.WriteLine($"G-Code Line Count: {robot.Gcode.LineCountGet()}");
Console.WriteLine($"G-Code Error Log Count: {robot.Gcode.ErrorLogCountGet()}");
Console.WriteLine($"G-code estimated run time: {robot.Gcode.DurationGet()} seconds");
// start motion
robot.Gcode.Run();
// monitor execution
Int64 activeLineNumber = 0;
do
{
Thread.Sleep(200);
if (activeLineNumber != robot.Gcode.ExecutingLineNumberGet()) // only write if on new line
{
activeLineNumber = robot.Gcode.ExecutingLineNumberGet();
Console.WriteLine($"G-Code Line Number: {activeLineNumber}");
}
} while (robot.Gcode.IsRunning());
Helpers.CheckErrors(robot.Gcode); // check for motion errors
// cleanup
Robot.RobotDelete(controller, robot);
Console.WriteLine("βœ… G-Code motion completed successfully");
}
// handle errors as needed
finally
{
controller.Delete(); // dispose
}
public class SampleGcodeCallback : GcodeCallback
{
public override void Execute(GcodeCallbackData data)
{
Console.WriteLine("G-Code Callback executed: " + data.LineNumber + " " + data.LineText);
// if you want to notify the Gcode object that there's an error processing, set its error details:
// data.UserError.number = RSIErrorMessage.RSI_ERROR_MESSAGE_DYNAMIC;
// data.UserError.text = "This is an error from the callback.";
}
}
static void ConfigurePhantomAxis(Axis phantomAxis)
Configures a phantom axis on the controller.
Definition _helpers.cs:144
static void CheckErrors(RapidCodeObject rsiObject)
Checks for errors in the given RapidCodeObject and throws an exception if any non-warning errors are ...
Definition _helpers.cs:15
Helpers class provides static methods for common tasks in RMP applications.
Definition _helpers.cs:5
void UserLabelSet(const char *const userLabel)
Set the axis User defined Label.
Represents a single axis of motion control. This class provides an interface for commanding motion,...
Definition rsi.h:5870
void DefaultAccelerationSet(double acceleration)
Set the default acceleration in UserUnits.
void DefaultDecelerationSet(double deceleration)
Set the default deceleration in UserUnits.
Axis * AxisGet(int32_t axisNumber)
AxisGet returns a pointer to an Axis object and initializes its internals.
static constexpr int32_t AxisFrameBufferSizeDefault
The default value of the AxisFrameBufferSize, also the minimum allowable value.
Definition rsi.h:854
static MotionController * Get()
Get an already running RMP EtherCAT controller.
void Delete(void)
Delete the MotionController and all its objects.
MultiAxis * MultiAxisGet(int32_t motionSupervisorNumber)
MultiAxisGet returns a pointer to a MultiAxis object and initializes its internals.
Represents the RMP soft motion controller. This class provides an interface to general controller con...
Definition rsi.h:800
void AxesAdd(Axis **axes, int32_t axisCount)
Represents multiple axes of motion control, allows you to map two or more Axis objects together for e...
Definition rsi.h:10804
void ClearFaults()
Clear all faults for an Axis or MultiAxis.
int32_t AmpEnableSet(bool enable, int32_t ampActiveTimeoutMilliseconds=AmpEnableTimeoutMillisecondsDefault, bool overrideRestrictedState=false)
Enable all amplifiers.
CartesianAxis
This enum specifies which Cartesian axis a LinearJointMapping maps a robot joint to.


πŸ“œ Motion: G-Code Units

Learn how changing linear units affects G-Code 📖 velocity and acceleration setters. Shows how to work with different unit systems and understand the impact on motion parameters.

/* This sample demonstrates how changing linear units affects G-Code velocity and acceleration setters.
Shows how to work with different unit systems in G-Code and understand the impact on motion parameters.
*/
using RSI.RapidCode; // RSI.RapidCode.dotNET;
Console.WriteLine("πŸ“œ Motion: G-Code Units");
// get rmp objects
try
{
Helpers.CheckErrors(controller);
// set robot axis labels
const string xLabel = "X-Axis";
const string yLabel = "Y-Axis";
const string zLabel = "Z-Axis";
const string aLabel = "A-Axis";
const string bLabel = "B-Axis";
const string cLabel = "C-Axis";
// get the 6 axis needed for XYZABC robot
Axis xAxis = controller.AxisGet(Constants.AXIS_0_INDEX);
Axis yAxis = controller.AxisGet(Constants.AXIS_1_INDEX);
Axis zAxis = controller.AxisGet(Constants.AXIS_2_INDEX);
Axis aAxis = controller.AxisGet(Constants.AXIS_3_INDEX);
Axis bAxis = controller.AxisGet(Constants.AXIS_4_INDEX);
Axis cAxis = controller.AxisGet(Constants.AXIS_5_INDEX);
// configure phantom axes
// set axis labels
xAxis.UserLabelSet(xLabel);
yAxis.UserLabelSet(yLabel);
zAxis.UserLabelSet(zLabel);
aAxis.UserLabelSet(aLabel);
bAxis.UserLabelSet(bLabel);
cAxis.UserLabelSet(cLabel);
// create multi-axis object for joints
MultiAxis jointsMultiAxis = controller.MultiAxisGet(0);
Axis[] axes = [xAxis, yAxis, zAxis, aAxis, bAxis, cAxis];
jointsMultiAxis.AxesAdd(axes, axes.Length);
jointsMultiAxis.ClearFaults();
// create kinematic model with centimeters
const LinearUnits units = LinearUnits.Centimeters;
const string modelName = "RSI_XYZABC_Centimeters";
const double scaling = 1.0;
const double offset = 0.0;
// build model
LinearModelBuilder builder = new(modelName);
builder.UnitsSet(units);
builder.JointAdd(new LinearJointMapping(0, CartesianAxis.X) { ExpectedLabel = xLabel, Scaling = scaling, Offset = offset });
builder.JointAdd(new LinearJointMapping(1, CartesianAxis.Y) { ExpectedLabel = yLabel, Scaling = scaling, Offset = offset });
builder.JointAdd(new LinearJointMapping(2, CartesianAxis.Z) { ExpectedLabel = zLabel, Scaling = scaling, Offset = offset });
builder.JointAdd(new LinearJointMapping(3, CartesianAxis.Roll) { ExpectedLabel = aLabel, Scaling = scaling, Offset = offset });
builder.JointAdd(new LinearJointMapping(4, CartesianAxis.Pitch) { ExpectedLabel = bLabel, Scaling = scaling, Offset = offset });
builder.JointAdd(new LinearJointMapping(5, CartesianAxis.Yaw) { ExpectedLabel = cLabel, Scaling = scaling, Offset = offset });
// create Robot object
Robot robot = Robot.RobotCreate(controller, jointsMultiAxis, builder, MotionController.AxisFrameBufferSizeDefault);
// note: to use the above kinematic model you must have a gantry (linear 1:1 kinematics)
// and each linear axis must have its user units scaled to millimeters
// this will return none - a gcode unit hasn't been established so it will use path units
// if path units are not set it will use user units
Console.WriteLine($"Initial G-Code units: {robot.Gcode.UnitsGet()}");
robot.Gcode.AccelerationRateSet(10); // sets G-Code acceleration to 10 Centimeters per MINUTE squared
robot.Gcode.FeedRateSet(10); // sets G-Code velocity to 10 Centimeters per MINUTE
Console.WriteLine($"Acceleration rate (cm/minΒ²): {robot.Gcode.AccelerationRateGet()}");
Console.WriteLine($"Feed rate (cm/min): {robot.Gcode.FeedRateGet()}");
robot.Gcode.UnitsSet(LinearUnits.Inches); // this is the same as executing G-Code line G20
Console.WriteLine($"G-Code units after setting to inches: {robot.Gcode.UnitsGet()}");
robot.Gcode.AccelerationRateSet(10); // sets G-Code acceleration to 10 Inches per MINUTE squared
robot.Gcode.FeedRateSet(10); // sets G-Code velocity to 10 Inches per MINUTE
Console.WriteLine($"Acceleration rate (in/minΒ²): {robot.Gcode.AccelerationRateGet()}");
Console.WriteLine($"Feed rate (in/min): {robot.Gcode.FeedRateGet()}");
// cleanup
Robot.RobotDelete(controller, robot);
}
// handle errors as needed
finally
{
controller.Delete(); // dispose
}
LinearUnits
Unit types. For Cartesian Robot/G-Code use.